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Optimum Coherent Imaging of a limited Field of View 

in the Presence of Angular and Aperture Noise 

1.   INTRODUCTION 

In recent years a substantial amount of work has been done on t'ne problem of 
image reconstruction from knowledge of the field distribution on a receiving aper- 
ture. The incoherent case has been discussed by Lc>, who concluded that a com- 
plete restoration of a sky temperature distribution is possible in principle, despite 
the finite ?ize of the aperture.   Th* problem was r« considered in detail bv Buck 

2 
and Gustincic   who. exploiting the properties of spheroidal functions, showed that 
only a limited number of fun- dons was useful in representing thi reconstructed 

3 
temperature distribution.   Rushforth and Harris    considered the effect of noise 
superimposed on both the object and the image distributions and took into proper 
account the advantages givenby the a priori knowledge of the limited extension of the 

4 
object in its plane.   Toraldo di Francia  discussed the general question of the 
degrees of freedom of an image and pointed out the difference between the coherent 
(Received Tor publication 28 April 19761 
1. Lo, Y.T. (1961) On the theoretical limitations of a radio telescope in determin- 

ing the sky temperature distribution. J. Appl.  Phys. 32:2052-2054. 
2. Buck, G.J. and Gustincic, Jacob T. (1967) Resolution limitations of a finite 

aperture. IEEE Transactions on Antennas and Prop. AP-15. No. 3:376-381. 
3. Rushforth, C.K. and Harris. R.W. (1968) Restoration, resolution and noise. J. 

Opt. Soc. Am.   58, No. 4:539-545. 
4. Toraldo di Francia. G. (1969) Degrees of freedom <»f an image. J. Opt. Soc. 

Am.   59. No. 7:799-804. 
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and the incoherent case.    Bendinelli, et al   established expressions for the recon- 
struction coefficients —in the presence of measurement noise—that minimize in a 
statistical sense the mean square difference between the object and its reconstruc- 
tion, integrated over the extension of the object.   All those studies are limited to 
the two-dimensional case of linear apertures. 

In this paper the question of image distribution reconstruction 'or coherent 
illumination is reconsidered from first principles, without any a priori assumption 
of a particular processing system behind the receiving aperture, that is without 
postulating any particular "optical spread function. "   The object is assumed to be 
located in the aperture far zone.   This being the case, the set of spherical waves 
constituting the scattering contributions from each point of the obi^t can be con- 
sidered locally planar at the aperture.    The image reconstruction is therefore 
equivalent to the determination of the function of direction characterizing the com- 
plex amplitudes—referred to the aperture center—of the Plane Wave Spectrum 
(PWS) into which the aperture field due to the object can b3 decomposed.    Because 
of its meaning the PWS associated with the object will be denoted as object angular 
distribution or simply object function, and mathematically modeled as a complex 
random function of the angular coordinates,   The complex coefficients for two plane 
waves incident from two different directions are assumed to be statisMcally uncor- 
related.   However, their relative phase relationship is fixed in time.   This is 
equivalent to considering the coherent case only.   It is assumed that the object dis- 
tribution of interest is angularly limited to a certain a priori assigned field of view 
(FOV).   We want to reconstruct its complex values by linear processing of the com- 
plex amplitude of the field distribution observed at the receiving aperture.     The 
observed values are due not only to the incident field scattered from the object but 
also to background interference, or "angular noire", generated by scatterers from 
inside and outside the FOV in the aperture far rone and by "measurement noise" 
locally introduced at the aperture in the measurement process. 

In this paper a linear reconstruction procedure will be established by using the 
methods of statistical estimation.   The procedure is "uniformly optimal" in the 
FOV in the sense of minimizing the statistical rms difference between the object 
distribution and its reconstructed image, for each direction of interest (ratner than 

S.    Bendinelli, M., Consortini. A.. Ronchi, L., and Frieden. B. R. (1974) Degrees 
of freedom and eigenfunctions for the noisy image, J. Opt. Soc.   64. No.  11: 
1498-1502.     *~ 

3 
"The situation is similar to that examined by Rushforth and Harris   for a somewhat 
different situation, since they considered the optical property of the system speci- 
fied a priori through a point spread function.   However, unlike the case considered 
in Ref. 3 in this paper all the scatterers are assumed to be in the far zone of the 
aperture.   Consequently, the background noise in the object plane in Ref. 3 is 
replaced by a PWS modeled as a random function of direction and denoted as 
"angular noise." 

ir-"-* ■ ■«MM* 



the rms reconstruction error integrated over the FOV, as for example in Ref.  5). 
The prolate spheroidal functions, for the linear aperture, and their generalizations 

for two-dimensional apertures, play a fundamental role in the analysis, as they did 
in most of the other related work.    In previous work, however, the use of spheroidal 
functions stemmed from their being eigunfunctions of the integral equation-defining 
the imaging operation-whose kernel was the optical spread function.   Their rele- 
vance to reconstruction is, in a sense, far more fundamental.    This was recognized 

4 2 by Toraldo di Francia    and Buck and Gustincic.      The appearance of spheroidal 
functions and their two-dimensional generalizations (discussed in this paper for 
relatively arbitrary geometries), is shown to be a natural consequence of the struc- 
ture of the inhomogeneous integral equation defining the statistically optimal linear 
processing of the observed aperture field.   The reconstruction algorithm consists of 
summing a truncated series of functions (prolate spheroidal or their generalization) 
weighted by coefficients depending upon the observed aperture field and upon the 
statistical second moments of the object distribution process and of the various types 
of noise.   The series is truncated to a number M of terms ("Effective Degrees of 
Freedom") determined through considerations of information theory.   Each term of 
the series, suitably ordered, provides an information gain less than the preceding 
one.   The number M is such that no advantage is obtained by adding additional terms 
to the serf es for the image reconstruction.   For each additional term the uncondi- 
tional entropy and the entropy conditioned to the presence of a given random scene 
become asymptotically equal.   Hence the information gain tends to zero.   Ir. terms 
of rms errorc integrated over the FOV this fact means the following:  the integrated 
rms error associated with a term of order i > M in the reconstruction series is 
essentially equal to the variance of the corresponding terms of the expansion of th? 
random scene integrated over the FOV.   Therefore, those terms in the series con- 
tribute only to noise in the reconstructed image.   The number M is proportional to 
the Füv-aperture prud^t. unless very low attd possibly unrealistic values of dis- 
turbance are present.   In such cases the possibility exists of an improvement of the 
reconstruction accuracy beyond the limits suggested by the classical optical theory. 

The domain of application of the reconstruction method here proposed is re- 
stricted to microwave frequencies.   In fact, the assumption that the field can be 
observed at all points of the aperture implies that the field is a classical electro- 
magnetic field, which requires a large number of quanta per degree of freedom. 
This condition is encountered at optical frequencies only with extremely intense 
fields. 

..  ...^L^    ■    ^^.^fa^  



2.    MATHEMATICAL MODEL AND PRELIMINARY RESULTS 

•; 

2.1    Object Function and Angular Noüe 

We will consider apertures and FOV's which are generally two-dimensional. 
It will be straightforward to simplify notation and results in order to deal with the 
simpler case of linear aperture. 

Let A be a receiving aperture on the x.y plane (whose area will also be indi- 
cated by the same letter A).    It is expedient for mathematical reasons to assume 
that the aperture has a point symmetry with respect to its center.   This mear s, if 
the origin is assumed coincident with the aperture center and an aperture point is 
located at (x.y), that there exists another aperture point at (-x,-y).    Except, for 
this constraint of point symmetry, the geometry is arbitrary. 

Let a position vector on the aperture plane be givsn by: 

x  =   x x + y y (1) 

x and y being unit vectors in x and y directions.   The rectangular coordinates in 
the wavenumber plane are related to the angular coordinates of a standard spherical 
system as follows: 

u = 2ff sin 0 cos <p. (2) 

2w 
v = -y sin 6 sinp (3) 

where X is the wavelength.   A position vector in the u, v plane is conveniently intro- 
duced: 

u = u X ♦ v Y . (4) 

Let A(x) be a function equal to unity in the points of the aperture and zero elsewhere. 

il for xc A 
(5) 

0 forxlA 

the "aperture function" is defined as follows 

»<«>"/    J       A(x»ejH'*d2x. (6) 

  Hiin-~-" "-J '*" *—   -~-~- ■■' 



where, of course. 

u*x u x + v Y , 

and d x is the element of the area in the x, y plane.   The field of view is defined as 
the domain S of the u, v plane, inside which is located the object distribution to 
Se reconstructed.   S is assumed to have, like A, a point symmetry about its center 
in the u, v plane.   The same letter S will denote the area of the FOV in the wave- 
number plane.   Also it proves convenient to introduce the function: 

for ufS 

for urfS 

(1 
S(U)   r. 

"     (o 
(7) 

Let the object angular distribution be a random function g (u), different from 
zero only in S, which will be called the object function.    The function g (u> is the 
complex amplitude (referred to the aperture center) of the PWS representing the 
object.   As mentioned in Section 1, we assume that the values of g (u> for two differ- 
ent arguments are statistically uncorrelated.    This physically means,  intuitively 
speaking, that in the FOV we have no a priori information of how the object function 
in a certain direction u of S affects probabilistically the value of the object function 
in a neighboring direction.   Thus, if we denote the statistical average operator by 
E. 

E [ S(u> go<u> S(v) K(j<v> 1 4w   6<u - v) P   S(u) . (8) 

where v. like u, represents an arbitrary direction and 6(ul is the two-dimensional 
— ~ 2      — 

impulse function.    I\. has the physical meaning of 4*   times the power per tinit 
aperture area incident from an unit area of wavenumber plane. 

A random function N.(ul. different from zero only in the domain S of the u, v 
plane, is introduced in order to represent the PWS associated with background 

coherent disturbance, or angular noise, incident from directions belonging to the 
FOV.    N (u>, like g (u), is an uncorrelated random function homogeneous in S. 

Hence: 

E [s<u> Nj(u) S(v» Nj(v) 1  *   4»2 Pj S(u> ft(u - v) (9) 

Noise is present outside the FOV.   It may simply mean that the part of the scene 
outside the FOV is of no interest and is therefore considered a disturbance.   Again 
such a noise N,(u> is uncorrelated: 

 ;  •f    - =  



i 

E        [ 1 - S(u)l   N2(u)    I 1 - S(v)l    N2(v)       = 4ir2P2     [l - S(u)lö(u - v) .     (1 0) 

and a reasonable assumption is that the statistical cross correlation between g (u), 
N (u) is zero for all values of the arguments. 

In the analytical model expressed by (10) the angular noise extends throughout 
the whole wavenumber plane, although of course N„(u) should be aoro outside the 
circle of the wavenumber plane corresponding to real directions, tnat is, outside 
the "vis.ble space" G, defined as the set of points of the wavenumbers plane such 
that 

|u|<2W> . 

The assumption (10) however is useful in simplifying the subsequent development, 
and has been adopted in most of the previous work in this area.    In Appendix C,  it 
will be shown that negligible error is committed by assuming the validity of (10), 
because in the wavenumber plane the visible space has a much greater extension 
than the FOV we are looking at. 

2.2    Aperture Field and Aperture Noi»e 

The received aperture field is the superposition of the plane wave spectra 
representing the object and the angular noise.   Therefore in our scalar approxima- 
tion it takes the form of a Fourier Transform: 

4»     4oo 

f(x) =  A(x)-ij  /      J '   S(u)   \g (u) +  N (u)l 
4ir"       -oe     -oo     ( «■ J 

«    [ 1 - S(u) 1  N2(u)   j   e"jH'£ d2u . (ID 

which defines f(x) as a random function.   If ( , like x represents a point of the aper- 
ture from (9 to 11), it easily follows that: 

E [f(x> f <£>]      =   A(x)MJ) J      /    |S(u)(Ps+ Pj)+   [l - S(u)j  P2  e*-<x"{>d2u. 

(12) 

that is. 

E [f(x> f   <o]   = A(x) A<0   T -ly «T^(x-i) ( Ps ♦ P, - P2)   ♦ P2 «<x -p\  . 

(13) 

where the characteristic function of the FOV has been introduced: 

10 

— 



+ 00      + 00 

»s^ =   /    /     S(2)e"'--d2u . (14) 
-00        -00 

-  ! 

i I 

To complete our model let us assume that additive noise n(x) is present on the 
aperture.   This means that "measurement errors" are present in the observation 
of the aperture field distribution.   In practical cases this noise may be of a multi- 
plicative nature.   However, the additive model simplifies the mathematics and is 
close to reality in many cases.   Thus .ne "observable" field distribution on the 

aperture is 

o(x) = f(x) ♦ n(x) . (15) 

a random function having zero mean, and we assume- that the measurement noise is 
uncorrelated: 

E [ A(x) A(£) n(x) n*(f)l  = o* A(x) 6(x -|) (16) 

This assumption is made customarily for mathematical convenience,    and leads 
to the well known difficulty of implying ar infinite noise power for a continuous 

aperture.   The difficulty is merely formal however and disappears if the rms com- 
ponents of aperture noise with respect to a system of orthogonal functions are con- 
sidered (see Appendix C).   Since the object function and the noise are uncorrelated 
one easily obtait.s by recoiling (9 to 11) and (15): 

[o<x)o*(£)l 

A(x) Mi) 
4« 
Ij^x-O  (Ps+Pl-P2)  ♦   (P2*<rn

2) •<£-!> .     (17) 

1    LINEAR ESTIMATION OF THE OBJECT FUNCTION 

3.1    Sutrmrnt of th* Problem 

We want to estimate the object function g (u) by linear processing of the observ- 
able aperture field distribution o(x).   Hence the estimator |(u) will have the general 

form of linear transformation: 

g(u)  =. S<u)  f /   H(u, x> o(x) d2x . 
A ~      " 

(18) 

11 

- 
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where o(x) is given by (15) and the kernel H(u,x) is to be determined.   To accom- 

plish such a task we require that for any direction u belonging to the FOV, the 

statistical average of the rms estimation error be minimum: 

e2 =   E   I | g(u> - gQ(u) |' =  min (19) 

As shown in Appendix A this leads to the integral equation: 

S(u) A(x) tß~ - 

=  S(u)A(x) fu    *p    2\-^  //   ffs<x-i)H(u.i)d2|+-lp—"- H(u.x: 
s 

(20) 

whose solution for H(u, x) will provide the optimum linear processing scheme. 

3.2    Optimum Procewor 

To solve Eq. (20) consider the associate homogeneous eigenvalue equation: 

Vi<x) -A // »s'i-i1 *i(I)d2i- (21> 
4ff A 

The kernel is symmetric real and positive definite, therefore the eigenvalues are 

positive numbers.   The eigenfunctions can be chosen to be real and constitute an 

infinite dimensional set complete and orthogonal in A.   They will be ordered for 

increasing values of A., starting from i ■ 0.   We will normalize them to unity: 

;/A *£> v*> A ■ »ik (22) 

Let: 

H(u. x) y   a,(u)(6,(x) 
£0   l"~    i_ 

(23) 

and insert this expression into (20), obtaining 

S(u) A(x) ej-- 

=  S(u) 
!/      P. - P,v   « P, * tt    <*> I 

(u) A(x)    (l +    n ,      J V   a.(u) A. *.<x> ♦    %   n   5]   a.(u) *.<x) 
~      "   l *S       ' i=0   l ~     '   l ~ rS    j?0    '"    '" 

12 

(24) 

«A «tan riMa ■    -    --'""-' 
ut^mtmm^tätm ■MM 



To find the coefficients a.(u) we need to introduce the set of functions: 

*.<„> =   n   *.(x)eJH-*d2«. 
i -       J JA   i - 

(25) 

which because of Parseval's theorem form an orthogonal (although not complete) 

set on the wavenumber plane: 

}°° r+°° *     2 2 
/   /     *i(H) *k<-1 d 1 = 4w   «ik 

(26) 

A brief discussion of the properties of the set {*.(u))   is given in Appendix B.   Now 

multiply both the sides oi (24) by <Mx) and integrate the aperture A.   By using 

orthogonality and the definition (25): 
_2 

(27) S(u) *k(u) = S(u) 
P.-P,, P9+< 

ak(u) 

and thus 

ak(u) 
S(u) *k(u) 

P. -P 

W)v T^ (28) 

The function H(u, x) therefore is from (23): 

go 

H(u. x)     V 
~i P   - P 

*k(u) *k(x) 

) V 
P0 + (T * (29) 

Hence the estimator of the object function is found from (18) and (29) to be: 

g(u) = S(u) T 
~  k=0 

*k(u) 

/       Pl " P2\ p2 + 0; A 
7   jf     *k(£) O(x) d2X . (30) 

MMAiiMuaiMMi 

completing the formal solution.   The estimate (30) will be called the best image or 
simply the image of the object function g (u). 

In any practical reconstruction algorithm the series (30) is truncated after a 
limited number M of terms.   In the next section the determination of the number M 
will be treated by considering the information transfer from object to image 

13 
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associated with each term of (30).   It will be shown that unless measurement and/or 

angular noise have extremely low values, essentially no advantage is obtained by 

considering terms of order greater than N where N is defined as 

N = smallest integer > AS/4ir (31) 

Such an information theoretical approach has been preferred to the alternative ap- 

proach consisting of minimizing in some sense the reconstruction error.   In fact 

the 1.   f< r method leads to certain mathematical convergence difficulties as a 

consequence of the assumption of a flat spectral density for g (u), as discussed 

briefly in Section 5.   Also the method used here provides an insight into the 

mechanism of information transfer from object to image. 

4.   INFORMATION TRANSFER FROM OBJECT TO IMAGE 

4.1    Information Gain Associated with the Observable Quantities 

In the processing scheme described in the previous section, the quantities 

,2 O. =   jfiktx) o(x)d x 
1 A   K ~      ~      ~ 

(32) 

are the "obseivables," and are random variables whose statistical properties are 

induced by these of the random function o(x).   Since o(x) has zero mean, we have 
also 

E[0.] =  0 . 

The second order moments of the observables (32) are found by using the ortho- 
gonal properties of the set of functions  (*\(x)} , and the expression (17).   In this 

way one obtains: 

O, O. 
l    k *iVAiV (1 V P2+"n ik 

(33) 

Thus the ob«rvables are uncorrelated.   Also because of their definition (32), they 
are integrals of random functions.   Thus by invoking the central limit theorem, we 
may assume that their probability densities are normal.   The same argument can 
be made in regard to the conditional probability density assuming a certain object 
function g (u).   For the unconditional probability density the variance is from (33): 

14 
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O*    =     A.    Pg  +   A.    P      +   (1   -    A.)   P,  +   6^   . i      2       n 
(34) 

and, for the conditional probability density assuming gQ(u), the variance is: 

erfg=A.P1+<l-A.>P2 + %
2, (35) 

that is the variance of O.» due only to the various types of noise. 
For each observable O., the entropies associated with the unconditional and 

conditional probability densities are found under the assumption of normal distribu- 
tions.   Thus, for the unconditional entropy we have,    by using here base 2 log- 

arithms: 

H(i) log2 (CT.  VS) + 2 16g 2 (36) 

with IT. given by (33).   For the conditional entropy assuming g (u) we have similarly: 

Hg(i) = log2 (agi yjT«) ^r^r (37) 

with IT    given by (35).   It is known that for a continuous probability density the 
entropy can be defined to the extent of an arbitrary additive constant.   This, how- 
ever, does not create any problem if one deals with a difference of two entropies. 
The information gain associated with the observable O., is in fact equal to the dif- 
ference of the two entropies (36) and (37), that is. 

I. =  H(i) - H (i) = log.—=-, (38) 

or. recalling (34-35): 

«i= i 1O«2 
(•• V») V 

F2 * °n 

Pl * P2  "   "    P2^n" 
—p— *l*   -TT~ 

(39) 

6.   Woodward, P.M. (1953) Probability and Information Theory, with Application 
to Radar Pergamon Press.  London. Chap,   l, pp 21-25. 
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Since the A.'s are a monotonic sequence decreasing with i, with a step behavior 
when i reaches the value N given by the aperture - FOV products (31) (Appendix B) 

we have: 

lim     I. - 0 , (40) 
i -♦ oo 

and an asymptotic expression for I. is found to be: 

1   Pc A- 

h 4;TT-T 
1O

*2
C
- (41) 

P
2 + (rn 

Equation (41) shows that the information gain is asymptotically proportional to the 
characteristic number A. associated with the ith degree of freedom multiplied by a 
suitably defined signal to noise ratio.    Practically, unless the signal to noise ratio 
is very large, the effective number of degrees of freedom of the image, that is, 
the number M of the reconstruction terms, can be chosen equal to N in (31), be- 
cause terms of higher order carry essentially no information.    This conclusion is 

corroborated by the reconstruction error analysis in the next section, and by numer- 
ical results given in the sequel. 

4.2   RMS Reconstruction Error Averaged in the FOV. 
Informational Compared to Statiitical Approach 

It is shown in Appendix B that the set of functions {4>.(u>}   is orthogonal and 

complete in S.   Thus, through a standard procedure, we can represent the object 
function by the expansion: 

00 

gQ(u) =   V -^— *.(u) jj  *.*(u) g0(u) d2u . (42) 

Equation (42) is obtained without resorting to any statistical consideration.   However 
it could have been obtained, less directly, through an application of Parseval's 
theorem to the integrals in Eq. (30) for the estimate, in the limiting case of absence 
of noise: 

t, 2 =   P    =  p    = 0 . (43) | 
n i £ 

This means that in the ideal conditions of Eq. (43) the object function can be exactly 
1 

reconstructed in principle, despite the limited size of the aperture.   This result is § 
perhaps surprising, but well established, and a brief discussion of this point is given 
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in Ref. 4.   It is not of practical interest because, as soon as any random disturb- 
ance intervenes, a very different conclusion is reached.    In this section we will 
consider the rms errors associated with each term in the estimate (30), and we will 

show that for terms for which the observables (32) carry zero information, the 
reconstruction error is equal to the a priori variance of the randor.   object distribu- 
tion.   The result shows the equivalence of the informational and statistical approach 
in establishing the number of terms necessary in the reconstruction procedure (30). 

Consider the rms reconstruction error averaged in the FOV, defined 
2 

(44) 
( 2 

In order to avoid complicated and after all unnecessary convergence difficulties, we 

assume for the moment that g (u) is represented satisfactory by the series (42) 
truncated to a finite number of terms.   By using (B4) of Appendix B, (30) and (42), 
we can write (44) as : 

2 

I   4w2A.E 
J/A Vi<x)o(x)d2x //S*i(H>g0<u)d'u 

l(.. 'h 
 J— 
4iTA. 

(45) 

where the number of terms of the series for the time being is left unspecified. By 
applying Parseval's theorem to the first of the integrals in each term of the series 
(45) and recalling that the random object function is uncorrelated with the disturb- 
ance, one obtains through simple manipulations: 

2 
1 

2 
Ja 
e    =   4*ZP0 V. 

>2A   + V**°* 

i   /      P. - P.A P, + ol 
(1+    11) v    *n. 

(46) 

By recalling (39), the expression of the rms error (46) turns out to be 

4*2 Pc f 
-21. 

(47) 

According to the discussion of Section 4.1, the information associated with the higher 
•«terms of the reconstruction series is essentially zero.   For such terms Eq. (47) 

consistently shows that the reconstruction errors tend to a constant, proportional 

17 
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to the density of power per aperture unit area and per unit area of wavenumber 
plane associated with the object function.    A further insight on the meaning of Eq. 
(47) is obtained by not'.ng that the rms of any term of the series Eq. (42) for the 
object function integrated in the FOV is: 

E 
S   (4ff X.) 

d2u //   VD g0(v) d2v = 4w   P, S ' (48) 

independent of the index i.   It ctm be established that Eq. (48) is also equal to the 
asymptotic value of each term of Eq. (47) when the index i tends to infinity (and I. 
therefore tends to zero).   This means that the integrated rms errors associated 
with higher order terms in the reconstruction series are equal to the a priori 
integrated mean squared value of the object function itself.   Thus adding terms 
carrying zero information does not improve or deteriorate the average mean 
squared error of the reconstructed image.   Again we reach the conclusion that, not 
unexpectedly, the information theoretical and statistical approi ches are equivalent 
in expressing the circumstance that the uncertainty associated > ith higher order 
reconstruction coefficients is equal to the a priori uncertainty of the corresponding 
terms in the representation of the random scene.   These terms are therefore 
useless in the reconstruction procedure. 

5.    PARTICULAR CASES 

Two important particular situations will be now considered: 
(a)   Imaging a Limited Sector of a Wide-Angle Random Scene 
In this case we assume that the aperture receives energy from a statistically 

homogeneous random scene, only a limited part of which - the one belonging to the 
FOV - is actually of interest.   This case can be modeled by assuming that g (u) and 
NJu) are different parts - inside and outside the FOV - of the same random process, 
so to speak.   Consequently we assume in our model that N.(u) is identically zero. 
Thus: 

Pj =  0   ;   Ps .   P2 . (49) 

The reconstruction procedure, Eq. (30), is in this case: 

|(u) = S(u) L-y-   Y *.<u) //  ¥.(x) O(x) d2x . 

1 + •; * 

(50) 
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Equation (50) shows that the reconstruction algorithm does not depend upon the 
2 ratio Po/ff    , which appears in i scale factor.    In other words the form of the an 

estimator g(u) is independent of the severity of the measurement errors and of the 

power received per square meter ~>f aperture.    However the measurement error 

affects the information transfer from the scene to the image, which for the ith 

reconstruction term is from Eq. (391: 
2 

1 + 
1 

logo (51) 

1 - \. + 
l 

In the next section we will see that for this case the optimal reconstruction proces- 

sor is equivalent to an isoplanatic optical system. 

(b)   Objects in the FOV Immersed in a Wide-Angle Background of 
Angular Noise 

Assume: 

p   _  p   _ p 
*1      *2      rC ' (52) 

The reconstruction algorithm is 

*.<u) 
|(u) = S(u> i — 

V 
PC + "n*   "A 

T   /'/ *.(x) O(x) dx . 
6      •' /.       I — — — 

(53) 

which does depend upon the level of background noise and measurement noise with 

respect to the object power.   The information transfer is from (39): 

A    ♦ 

h *  2 l0ß2 — 

*Vffn 
(54) 

PC + V 

and goes rapidly to zero for i > N. 

A numerical example is provided to clarify the meaning of the theoretical re- 

sults obtained. 

Example: 

Consider the one-dimensional case of a linear aperture of length 2a.   The angu- 

lar extent of the FOV is 20  , thus in the wavenumber axis its extent is: s 
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*  A 

The one dimensional equivalent of (31) is: 

2a 2u 2a 
N =  smallest integer > —*■    s  = -r- 2 sin 0( 

Put: 

2tr a     .    fl c = —r—   sin 0    , A s 

and assume for our numerical example: 

c =  8. that is,   N =  5 . 

The characteristic Eq. (21) in the monodimensional case becomes the eigenvalue 
equation for prolate spheroidal functions, with parameter c.   The first eight eigen- 
values for i = 8 are listed in Table 1. 

The information transfers associated with the various terms in the reconstruc- 
tion series for cases (a) and (b) considered above are now numerically evaluated. 
Case (a). 

For various values of the ratio Pc/w_   the information contents I. of the various an l 
terms in the image reconstruction are listed in Table 2.   it is apparent that the I.'s 
for i > 4 decrease very rapidly.   In fact Ir is already negligible.   Notice the weak 
dependence of the higher terms of the image series upon the signal to noise ratio. 
As expected from the theoretical considerations, five terms only c»rry practically 
the total information available. 
Case (bt 

In Table 3 the reconstruction coefficients for case <b) have been listed, normal- 
ized to the first (i = 0) for various values of the appropriately defined signal to 
noise ratio.   The information transfers are listed in Table 4.   Again we reach the 
conclusion that N = 5 terms are sufficient for the optimum reconstruction for small 
or moderate signal to noise ratios.    However for a signal to noise ratio of the order 
of 30 d3 or greater the possibility of a moderate increase in the accuracy of image 
reconstruction emerges.   An inspection of Table 4 shows that I». I., and l_ are not 
negligible when the signal to noise ratio is equal to 10 . 
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6.    DISCUSSION AND FINAL REMARKS 

As customary, in our treatment the scalar approximation has been assumed. 

For limited FOV - ten degrees or so - it is believed that no substantial error is 

committed.   On the other hand the mathematical complexity is substantially re- 

duced, because the analytical machinery of double orthogonal functions can be 

applied. 

The physical reason why higher terms in the series (30) are of little or no use 

in the reconstruction algorithm stems from the fact that the "energy" associated 

with the functions ♦ .(u)is essentially confined within the FOV for i s N, and outside for 

i > N (see Appendix B).   Thus nigher order reconstruction terms contribute little 

to a faithful reproduction of the random scene inside the FOV.   On the other hand 

by applying Parseval's theorem to the integrals in (30) it is seen that higher order 

terms are those maximally affected by the angular noise incident from outside the 

FOV.   To get a better heuristic insight of the nature of the reconstruction algorithm 

consider the case (a) of the preceding section.   In this case we singled out the 

sector S - the FOV - from a wide angle random scene.   Truncating the appropriate 

estimator (50) to N terms, (N being the smallest integer greater th*.r. the aperture - 

FOV product), or letting the sum be extended to infinity yields informationally equi- 

valent expressions as follows from the discussion of Section 4.   We invoke now the 

representation for the aperture function (easy to establish): 

o.ü - v) = -L2J    *.(u)*.*(v) (55) 
A"    "      47i=0     l"      l   " 

valid for any u, v, and uniformly convergent for u and v both belonging to S,     By 

taking the upper limit of the sum in (50) equal to infinity, by applying Parseval's 

theorem to the vnrious integrals, and interchanging the sum with the integral, one 

gets (neglecting a constant factor): 

g(u) - S(u) -X,   (      I      <rA(u - v) O(v) d2v . (56) 

where 

0(u)=  [g0<u>+ Njfu)]   S(u) ♦ Nj(u)     [l - S<u)l 

♦   ((  n(x)eJ-£ d2x (57) 
A     ~ 

7.   Hildebrand, Francis B. (1965) Methods of Applied Mathematics. 2nd Edition. 
Prentice Hall. N.J.. pp 314-TT5^ 

| 
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is the angular distribution of the incident field plus an equivalent angular measure- 
ment noise—the last term in (57).    Equation (56) has a simple physical interpreta- 

2 tion.    For case (a) the optimal processing is independent of the ratio P-/<r     and is 
equivalent to the operation performed by a clear, aberration free (isoplanatic) 
optical system, with "point spread function" equal to the aperture function f.(u), 
the observed output being limited to directions belonging to the FOV. 

In different cases, like (b) in the previous section, the optimal processor de- 
pends upon the a priori knowledge of signal-to-noise ratio.   However, because of 

the cutoff properties of A., it can be inferred that, only when the noise is very 
small, an improved restoration is obtained by using the optimum processor instead 
of the optical operation (56). 

To conclude these remarks we want to establish an approximate but very inter- 
esting expression for the total information that can be extracted from a limited FOV 
in the presence of angular and measurement noise.   By invoking the cutoff property 
of the characteristic number A., we assume that the actual values A. can be approxi- 
mately replaced by 1 for i s N, and by 0 for i > N.   Also assume [see (31)]: 

N AS 

7? 

Then from (39) we obtain fcr the total information I: 

P. 
I -  AS     1 log. 

2-°n 

which closely resembles the classical expression for th* information transfer on a 
noisy channel.   In the present case the proouct aperture FOV replaces the bandwidth- 
time product of Shannon's formula. 
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Appendix A 

The Equation for the Object Function Estimator 

Let 

H(u.x) =  HQ(u.x) + tj Hj(u.x). (Al) 

where H (u.x) is the kernel satisfying (18-19). H^u.x) is an arbitrary function, 
and ij is a small quantity.    By recalling (19) we obtain: 

H-    I s ° ■ (A2) 

because of (AD and the meaning of H (u.x).   Thus from (A2): 

E 

Because H,(u,x) is arbitrary, (A3) is equivalent to 

* * 
S(u) E [go(u) o (4)1   - S(u) //   Ho<u.x) E fo(x) o <{) 1   d*x . (A4) 
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By taking into account (16-17) we obtain: 
+ 00 + 00 

A(0-^   /|s(u)E   fg0(u)go*  (v)l     eJ-*  d2v=S(u)A(?) 
4ff -00-00 

+ 00 +0C 

X       J/A(x)H0(u.x) 

or because of (8): 

-ij rrg(x - f) (Ps + Pj - P2) + 8(z - ? ) (P2 f «J 
4" 

d x , 

(A5) 

S(u) A(|) Ps ej-i 

= S(u) A (?) 
PS + P1 _ P2    rr 2 2 
—-—r  // "s** "I* Ho(H»2i) d * + (pi + ffn » Ho<H'l) 

4T A 

Dropping the subscript 0, not having any particular meaning, and interchanging the 

roles of x and £, Eq.  (20) is obtained. 
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Appendix B 

Some Properties of the Functions *j (gj 

By using the definition (25) and Fourier Transforming (21) we find: 

A. *.(u) = -L  f{  r,   (u - v)*.(v) d2v , (Bl) 
1     l"      4»       B ~ 

an integral equation with the same form as (21), and having identical eigenvalues. 
Thus the set )*.(«) {   is complete and orthogonal in S.   In order to find the normal- 
ization of ♦■(u) in S, consistent with (25), let us consider the integrated product: 

// *t<»> *k <«> d*H = // d2H // ^- rf2- //   *k^ e1~" "     d^ ' <B2> 

By interchanging the order of integrations in the left side, one obtains: 

//   *.(u) +.   (u) d2u =   ff   «,.(>) d2x //  rrs(x - V vw(«» d2! . (B3) 

By invoking (21-22) one concludes that: 

//s*i(u)*k(u)d2u = 4-2A.6.k. (B4) 
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Thus (25) and(B4) show that the functions *.(u) form a double orthogonal system, 

a generalization of a known property of the prelate spheroidal functions.   Also 

from (25) and(B4) by using Parseval's theorem: 

//_ 
A.   = 

l 

*.(u) 
l — 

d2u 

-Op -00 

(B5) 

*j(u) A2 
d u 

that is the characteristic value A. is the fraction of the total "power" associated with 

*.(u), which belongs to S.   Sine«» ine t^.(x) are real it follows from (25) that: 

*.(-u) = *j (u) . (B6) 

The eigenvalues A. of (21), or(BD, are positive numbers lesser than unity.    It can 

be shown that as a consequence of the representation (55) for the aperture function 

the following property holds: 

i=0 

AS 

7? (B7) 

that is the sum of the eigenvalues—trace of the integral operator in (BD —is conver- 

gent and is proportional to the aperture - FOV product.   A fundamental feature of 

the numbers A. is their cut-off property.   If they are ordered with increasing values 

of the index, their values are close to unity for 

A. - 1,   'hen i < integer part of AS 

7? (B8) 

and close to zero for greater i's: 

A. - 0 for i •> integer part of AS 

7? <B9> 

This fundamental property has been pointed out by Slepian and Pollack   for the one- 

dimensional case (that is, for the prolate spheroidal functions) and has been shown 

to be valid for the general case by Landau. 

*Slepian,  D. and Pollak, H. P. (1961) Prolate spheroidal wave functions, Fourier 
analysis and uncertainty — 1, Bell System Tech. J., 40:43-63. 

■ MM» 

""'Landau, H. J. (1967) Necessary conditions for sampling and interpolation of certain 
entire functions Acta Mathematica, pp 37-52. 
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Appendix C 

Power Associated with Each Observable 

The terms (34) are the powers associated with the observables O's.   The total 
power received by the aperture from the object function can be found to be by, using 
(B7): 

Total received object power = Pg 
AS 
17 (CD 

associated with N,(u).   On the other hand the total angular noise power received 
and a similar expression, with P. replacing P„, holds for the total received power 
associated with N,(u).   O 
from outside the FOV is: 

Total power from outside FOV = 
4w 

- S (C2) 

having here taken into proper account the extent of the visible space. 
Assuming correctly the noise N, limited to visible space G, rather than extend- 

ing to the entire wavenumber plane, amounts to replacing in (17) and (A5) the 
symbolic function 6(x -^) with 

»G<i-i>=Jl«J""i>dVx TTI— (C3) 
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We now resort to qualitative reasonings.   If we consider a number of terms close 

to N given by (31), the functions (Mx) are slowly varying on the aperture (in the one 

dimensional case they have a number of zeros equal to their orders).   On the other 

hand the function (C3) has a peak much sharper than that of a (x), given by (14), 

under the assumption of S<<"G.   Therefore no substantial error is committed by 

replacing (C3) by a delta function in integrals involving the product of (C3) with 

ijiAx), if i is not substantially greater than N.   In fact, more rigorously it is possi- 

ble to show that, for a given product AS: 

c '"A      * 
-♦0 4* 

«TQ(X -_|) - 4ir 6(x -i) d2x= 0 

The measurement noise power for each degree of freedom is found to be 

(/   <Mx> n(x) dx f/   *,(£> n (£) <T( 
A   1_     -     _     A   l_ 

because of (16) and (22).   Thus a    is equal to the rms measurement noise associ- 

ated with each observable O., furnishing an alternative interpretation of its physical 

meaning.   A strictly related discussion by Yaglom can be found in his book on the 

theory of stationary random functions. 

*Yaglom, A.M. (1965) An Introduction to the Theory of Stationary Random Func- 
tions. Prentice-Hall, N.J., pp 207-213. 
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